

Dealing with Uncertainty in Statics

Outline

- Uncertainty in statics
- Why consider uncertainty
- Basics of uncertainty
- Uncertainty analysis in statics
- Examples
- Conclusions

Uncertainty in Statics: An Example

- Given: $M_A = 6000 \text{ N} \cdot \text{m}$ counterclockwise, $F_1 = 350 \text{ N}$, and $F_2 = 450 \text{ N}$.
- Find: F_3
- Solution
 - $M_A = F_1 \cos 30^\circ (1.5) + F_2 \cos 45^\circ (5) + F_3 \cos 60^\circ (5) + F_3 \sin 60^\circ (4) = 0$ ○ $F_3 = 663.0 \text{ N}$
- Everything is modeled perfectly.
- In reality M_A , F_1 , F_2 and the lengths are all random.
- So is F_3 It fluctuates around 663.0 N.
- How do we know the fluctuation?

M

 F_3

Where Does Uncertainty Come From?

- Manufacturing Imprecision
 - Dimensions of a structure
 - Material properties
- Environment
 - Loading
 - Temperature
 - Different user conditions
 - Wind, snow, etc.

Why Consider Uncertainty?

- We know the true solution
- We know the effect of uncertainty
- We can make more reliability decisions
- We can predict the chance of failure

If we consider uncertainties in the above example, we can design better cost-effective beams with sufficient reliability against failures with respect to strength, stiffness, etc.

How Do We Model Uncertainty?

- Measure X = F₁ ten times, we get samples X=(345.1,340.4,336.6,342.8,356.3,363.5, 351.9,349.3,342.4,355.7) N
- How do we use the samples?

How Do We Measure the Dispersion (Uncertainty)?

- X=(345.1,340.4,336.6,342.8,356.3,363.5,351.9,349.3,342.4,355.7) N For the deviation from \overline{X} , we could use $X_i - \overline{X}$ and $\frac{1}{N} \sum (X_i - \overline{X})$, N = 10
- But $\frac{1}{N}\sum(X_i-\overline{X})=0.$
- To avoid 0, we use $\frac{1}{N}\sum (X_i \overline{X})^2$;
- To have the same unit as \overline{X} , we use $\sigma = \sqrt{\frac{1}{N}\sum(X_i \mu)^2}$
- To make the estimate unbiased, we actually use

standard deviation: $\sigma = \sqrt{\frac{1}{N-1}\sum(X_i - \mu)^2}$.

• Now we have $\sigma = 8.42$ N for $\overline{X} = 348.4$ N (We can use Excel)

More About Standard Deviation (std)

- It indicates how data spread around the average
- It is always non-negative
- High std means
 - High dispersion
 - High uncertainty
 - High risk

Probability Distribution

- With more samples, we can draw a histogram.
- If the vertical axis is the frequency and the number of samples is infinity, we get a probability density function (PDF) f(x).
- The probability of $a \le X \le b$.

$$\Pr\{a \le X \le b\} = \int_a^b f(x) dx$$

Normal Distribution

- $X \sim N(\mu, \sigma^2)$
- μ mean value, can be estimated by \overline{X}
- How to estimate σ has been discussed
- $F(x) = \Pr{X < x}$ is called cumulative distribution function (CDF)
- $\Pr\{a < X < b\} = F(b) F(a)$
- $\Pr{X > x} = 1 \Pr{X \le x} = 1 F(x)$

How to Calculate F(x)?

- Use Excel
 - -NORMDIST(x,mean,std,cumulative)

-Cumulative=true

Example 1

- The moment (in N·m) acting on a beam was recorded 20 times.
- Assume the moment is normally distributed.
- Questions
 - Mean =? Std = ?
 - What is the probability that the beam has a moment greater than 1192.3 N·m?

1	1198.5
2	1192.5
3	1188.1
4	1190.2
5	1195.1
6	1198.7
7	1196.3
8	1190.7
9	1193.9
10	1192.2
11	1191.5
12	1199.2
13	1197.7
14	1194.1
15	1196.9
16	1193.0
17	1197.5
18	1194.9
19	1199.1
20	1192.6

Solution: Use Excel

- X = average moment
- $X \sim N(\mu, \sigma^2)$ $\mu = 1194.635$ N.m by AVERAGE $\sigma = 3.276$ N.m by STDEV
- For X > 1192.3 N. m $Pr{X > 1192.3} = 1 Pr{X \le X}$

More Equations

- $X_i \sim N(\mu_i, \sigma_i^2)$
- X_i (*i* = 1,2 ... *n*) σ_i^2 independent

– The occurrence of X_1 does not affect that of X_2

•
$$Y = c_0 + c_1 X_1 + \dots + c_n X_n$$

- c_i (i = 1, 2, ..., n) are constants
- Then $Y \sim N(\mu_y, \sigma_y^2)$
- $\mu_y = c_0 + c_1\mu_1 + c_2\mu_2 + \dots + c_n\mu_n$
- $\sigma_y = \sqrt{c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2 + \dots + c_n^2 \sigma_n^2}$

Example 2

A company plans to design a picnic table, which has a weight of $W_T = 75$ lb and a center of gravity at G_T . If a man weighing $W_M = 215$ lb has a center of gravity at G_M and sits down in the position shown, determine the vertical reaction at each of the two legs *B*. Will the table tip over? Neglect the thickness of the legs.

Solution

Since N_B is positive, the table will not tip over.

If Consider Uncertainty

• Due to uncertainty in users $W_M \sim N(215, 10^2)$ lb

Due to manufacturing uncertainty $W_T \sim N(75, 1^2)$ lb

 W_M and W_T are independent.

What is the probability that the table will tip over?

Solution:

$$2N_B(44) + W_M(7) - W_T(22) = 0$$

where $W_M \sim N(215, 10^2)$ lb and $W_T \sim N(75, 1^2)$ lb
Calculate μ_{N_B} and σ_{N_B}
 $\mu_{N_B} = \frac{\mu_{W_T}(22) - \mu_{W_M}(7)}{2*44} = 1.648$ lb
 $\sigma_{N_B} = \frac{1}{2*44} \sqrt{22^2 \sigma_{W_T}^2 + 7^2 \sigma_{W_M}^2} = 0.834$ lb
If the table tips over, $N_B < 0$. The probability is therefore
 $P(N_D < 0) = \text{NORMDIST}(0, 1.648, 0.834)$ True = 0.0241

 $P(N_B < 0) = \text{NORMDIST}(0, 1.648, 0.834, \text{True}) = 0.0241$ The probability is about 2.4%.

Conclusions

- Uncertainty always exists in applications of statics.
- We can use a probability distribution, including its mean μ and standard deviation σ , to model uncertainty or randomness.
- Uncertainty may have a high impact on performance.
- If uncertainty is large, we should consider it during analysis and design in order to make better decisions.